DPDK ACL API 封装

match.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>

#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_string_fns.h>
#include <rte_acl.h>

#include "acl_match.h"

const char cb_port_delim[] = ":";
#define MAX_ACL_RULE_NUM 10000
#define DEFAULT_MAX_CATEGORIES 16
#define IPV6_ADDR_LEN 16
#define IPV6_ADDR_U16 (IPV6_ADDR_LEN / sizeof(uint16_t))
#define IPV6_ADDR_U32 (IPV6_ADDR_LEN / sizeof(uint32_t))
#define ACL_PRIORITY_DEBIG 9000


//文本规则 -- 序列定义(空格分隔形式)
//src_ip/masklen dst_ip/masklen src_begin : src_end dst_bdegin : dst_end proto/mask ruleid
//2.2.2.3/24 2.2.2.7/24 32 : 32 0 : 65535 6/0xff 0
//9.9.9.3/24 9.9.9.7/24 32 : 32 0 : 65535 6/0xff 1
enum {
CB_FLD_SRC_ADDR,
CB_FLD_DST_ADDR,
CB_FLD_SRC_PORT_LOW,
CB_FLD_SRC_PORT_DLM,
CB_FLD_SRC_PORT_HIGH,
CB_FLD_DST_PORT_LOW,
CB_FLD_DST_PORT_DLM,
CB_FLD_DST_PORT_HIGH,
CB_FLD_PROTO,
CB_FLD_USERDATA,
// CB_FLD_CATEGORY_MASK,
// CB_FLD_PRIORITY,
CB_FLD_NUM,
};

// IPv4 规则的定义
enum {
PROTO_FIELD_IPV4,
SRC_FIELD_IPV4,
DST_FIELD_IPV4,
SRCP_FIELD_IPV4,
DSTP_FIELD_IPV4,
NUM_FIELDS_IPV4
};

// IPv6 规则的定义
enum {
PROTO_FIELD_IPV6,
SRC1_FIELD_IPV6,
SRC2_FIELD_IPV6,
SRC3_FIELD_IPV6,
SRC4_FIELD_IPV6,
DST1_FIELD_IPV6,
DST2_FIELD_IPV6,
DST3_FIELD_IPV6,
DST4_FIELD_IPV6,
SRCP_FIELD_IPV6,
DSTP_FIELD_IPV6,
NUM_FIELDS_IPV6
};

#define GET_CB_FIELD(in, fd, base, lim, dlm) do { \
unsigned long val; \
char *end; \
errno = 0; \
val = strtoul((in), &end, (base)); \
if (errno != 0 || end[0] != (dlm) || val > (lim)) \
return -EINVAL; \
(fd) = (typeof(fd))val; \
(in) = end + 1; \
} while (0)

#define uint32_t_to_char(ip, a, b, c, d) do { \
*a = (unsigned char)(ip >> 24 & 0xff);\
*b = (unsigned char)(ip >> 16 & 0xff);\
*c = (unsigned char)(ip >> 8 & 0xff); \
*d = (unsigned char)(ip & 0xff); \
} while (0)

struct acl_context_t
{
struct rte_acl_ctx *acl_ctx_v4;
struct rte_acl_ctx *acl_ctx_v6;
};

//IPV4规则的定义 -- 参考 IPV4+TCP 结构
struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
{
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),
.field_index = PROTO_FIELD_IPV4,
.input_index = PROTO_FIELD_IPV4,//本4字节空间无其他共享字段
.offset = 0,
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC_FIELD_IPV4,
.input_index = SRC_FIELD_IPV4,
.offset = offsetof(struct ipv4_hdr, src_addr) - offsetof(struct ipv4_hdr, next_proto_id),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST_FIELD_IPV4,
.input_index = DST_FIELD_IPV4,
.offset = offsetof(struct ipv4_hdr, dst_addr) - offsetof(struct ipv4_hdr, next_proto_id),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = SRCP_FIELD_IPV4,
.input_index = SRCP_FIELD_IPV4,
.offset = sizeof(struct ipv4_hdr) - offsetof(struct ipv4_hdr, next_proto_id),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = DSTP_FIELD_IPV4,
.input_index = SRCP_FIELD_IPV4, //与 SRCPOST 字段共享4字节空间
.offset = sizeof(struct ipv4_hdr) - offsetof(struct ipv4_hdr, next_proto_id) + sizeof(uint16_t),
},
};

//IPV6规则的定义 -- 参考 IPV4+TCP 结构
struct rte_acl_field_def ipv6_defs[NUM_FIELDS_IPV6] = {
{
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),//本4字节空间无其他共享字段
.field_index = PROTO_FIELD_IPV6,
.input_index = PROTO_FIELD_IPV6,
.offset = 0,
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC1_FIELD_IPV6,
.input_index = SRC1_FIELD_IPV6,
.offset = offsetof(struct ipv6_hdr, src_addr) - offsetof(struct ipv6_hdr, proto),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC2_FIELD_IPV6,
.input_index = SRC2_FIELD_IPV6,
.offset = offsetof(struct ipv6_hdr, src_addr) - offsetof(struct ipv6_hdr, proto) + sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC3_FIELD_IPV6,
.input_index = SRC3_FIELD_IPV6,
.offset = offsetof(struct ipv6_hdr, src_addr) - offsetof(struct ipv6_hdr, proto) + 2 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = SRC4_FIELD_IPV6,
.input_index = SRC4_FIELD_IPV6,
.offset = offsetof(struct ipv6_hdr, src_addr) - offsetof(struct ipv6_hdr, proto) + 3 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST1_FIELD_IPV6,
.input_index = DST1_FIELD_IPV6,
.offset = offsetof(struct ipv6_hdr, dst_addr) - offsetof(struct ipv6_hdr, proto),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST2_FIELD_IPV6,
.input_index = DST2_FIELD_IPV6,
.offset = offsetof(struct ipv6_hdr, dst_addr) - offsetof(struct ipv6_hdr, proto) + sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST3_FIELD_IPV6,
.input_index = DST3_FIELD_IPV6,
.offset = offsetof(struct ipv6_hdr, dst_addr) - offsetof(struct ipv6_hdr, proto) + 2 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof(uint32_t),
.field_index = DST4_FIELD_IPV6,
.input_index = DST4_FIELD_IPV6,
.offset = offsetof(struct ipv6_hdr, dst_addr) - offsetof(struct ipv6_hdr, proto) + 3 * sizeof(uint32_t),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = SRCP_FIELD_IPV6,
.input_index = SRCP_FIELD_IPV6,
.offset = sizeof(struct ipv6_hdr) - offsetof(struct ipv6_hdr, proto),
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = DSTP_FIELD_IPV6,
.input_index = SRCP_FIELD_IPV6, //与 SRCPOST 字段共享4字节空间
.offset = sizeof(struct ipv6_hdr) - offsetof(struct ipv6_hdr, proto) + sizeof(uint16_t),
},
};

//定义ACL_IPV4的结构体(包含了userdata,category_mask,priority)
RTE_ACL_RULE_DEF(acl4_rule, RTE_DIM(ipv4_defs));
RTE_ACL_RULE_DEF(acl6_rule, RTE_DIM(ipv6_defs));

//规则的编译
static struct rte_acl_ctx*
setup_acl(struct rte_acl_rule *acl_base, unsigned int acl_num, int is_ipv6)
{
int socketid = 0;
char name[PATH_MAX];
struct rte_acl_param acl_param;
struct rte_acl_config acl_build_param;
struct rte_acl_ctx *context;
int dim = is_ipv6 ? RTE_DIM(ipv6_defs) : RTE_DIM(ipv4_defs);

if(0 == acl_num)
{
return NULL;
}

/* Create ACL contexts */
snprintf(name, sizeof(name), "%s_%d",
is_ipv6 ? "CHUNLI_ACL_IPV6" : "CHUNLI_ACL_IPV4",
socketid);

acl_param.name = name;
acl_param.socket_id = socketid;
acl_param.rule_size = RTE_ACL_RULE_SZ(dim);
acl_param.max_rule_num = MAX_ACL_RULE_NUM;

if ((context = rte_acl_create(&acl_param)) == NULL)
rte_exit(EXIT_FAILURE, "Failed to create ACL context\n");

if (rte_acl_set_ctx_classify(context, RTE_ACL_CLASSIFY_SCALAR) != 0)
rte_exit(EXIT_FAILURE, "Failed to setup classify method for ACL context\n");

if (rte_acl_add_rules(context, acl_base, acl_num) < 0)
rte_exit(EXIT_FAILURE, "add rules failed\n");

/* Perform builds */
memset(&acl_build_param, 0, sizeof(acl_build_param));

acl_build_param.num_categories = DEFAULT_MAX_CATEGORIES;
acl_build_param.num_fields = dim;
void *psrc = is_ipv6 ? ipv6_defs : ipv4_defs;
int copy = is_ipv6 ? sizeof(ipv6_defs) : sizeof(ipv4_defs);
memcpy(&acl_build_param.defs, psrc, copy);

if (rte_acl_build(context, &acl_build_param) != 0)
{
rte_exit(EXIT_FAILURE, "Failed to build ACL trie\n");
}

return context;
}

//IPv4 规则打印到终端
static inline void
print_one_ipv4_rule(struct acl4_rule *rule)
{
unsigned char a, b, c, d;

uint32_t_to_char(rule->field[SRC_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
rule->field[SRC_FIELD_IPV4].mask_range.u32);
uint32_t_to_char(rule->field[DST_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu/%u ", a, b, c, d,
rule->field[DST_FIELD_IPV4].mask_range.u32);
printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
rule->field[SRCP_FIELD_IPV4].value.u16,
rule->field[SRCP_FIELD_IPV4].mask_range.u16,
rule->field[DSTP_FIELD_IPV4].value.u16,
rule->field[DSTP_FIELD_IPV4].mask_range.u16,
rule->field[PROTO_FIELD_IPV4].value.u8,
rule->field[PROTO_FIELD_IPV4].mask_range.u8);
printf("userdata:%u ", rule->data.userdata);
printf("priority:%u ", rule->data.priority);
printf("category_mask:%u ", rule->data.category_mask);
}

static inline void
dump_ipv4_rules(struct acl4_rule *rule, int num)
{
int i;
for (i = 0; i < num; i++) {
printf("%d:", i + 1);
print_one_ipv4_rule(rule + i);
printf("\n");
}
}

//IPv6 规则打印到终端
static inline void
print_one_ipv6_rule(struct acl6_rule *rule)
{
unsigned char a, b, c, d;

uint32_t_to_char(rule->field[SRC1_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[SRC2_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[SRC3_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[SRC4_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
rule->field[SRC1_FIELD_IPV6].mask_range.u32
+ rule->field[SRC2_FIELD_IPV6].mask_range.u32
+ rule->field[SRC3_FIELD_IPV6].mask_range.u32
+ rule->field[SRC4_FIELD_IPV6].mask_range.u32);

uint32_t_to_char(rule->field[DST1_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[DST2_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[DST3_FIELD_IPV6].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[DST4_FIELD_IPV6].value.u32,
&a, &b, &c, &d);

printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
rule->field[DST1_FIELD_IPV6].mask_range.u32
+ rule->field[DST2_FIELD_IPV6].mask_range.u32
+ rule->field[DST3_FIELD_IPV6].mask_range.u32
+ rule->field[DST4_FIELD_IPV6].mask_range.u32);

printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
rule->field[SRCP_FIELD_IPV6].value.u16,
rule->field[SRCP_FIELD_IPV6].mask_range.u16,
rule->field[DSTP_FIELD_IPV6].value.u16,
rule->field[DSTP_FIELD_IPV6].mask_range.u16,
rule->field[PROTO_FIELD_IPV6].value.u8,
rule->field[PROTO_FIELD_IPV6].mask_range.u8);

printf("userdata:%u ", rule->data.userdata);
printf("priority:%u ", rule->data.priority);
printf("category_mask:%u ", rule->data.category_mask);
}

static inline void
dump_ipv6_rules(struct acl6_rule *rule, int num)
{
int i;
for (i = 0; i < num; i++) {
printf("%d:", i + 1);
print_one_ipv6_rule(rule + i);
printf("\n");
}
}

//创建ACL对象
struct acl_context_t *acl_match_create()
{
struct acl_context_t *p = malloc(sizeof(struct acl_context_t));
memset(p, 0, sizeof(struct acl_context_t));
return p;
}

////////// 内部 通统一 API --START ////////////
static int
acl_load_ipv4(struct acl_context_t *ctx, struct rte_acl_rule *rule_ipv4, int num)
{
dump_ipv4_rules((struct acl4_rule*)rule_ipv4, num);
struct rte_acl_ctx *acl_ctx_v4 = setup_acl(rule_ipv4, num, 0);
if(NULL == ctx)
{
printf("ERROR: setup_acl in acl_load_ipv4\n");
return -1;
}
ctx->acl_ctx_v4 = acl_ctx_v4;
return 0;
}

//ACL对象添加 规则
static int
acl_load_ipv6(struct acl_context_t *ctx, struct rte_acl_rule *rule_ipv6, int num)
{
dump_ipv6_rules((struct acl6_rule*)rule_ipv6, num);
struct rte_acl_ctx *acl_ctx_v6 = setup_acl(rule_ipv6, num, 1);
if(NULL == ctx)
{
printf("ERROR: setup_acl in acl_load_ipv6\n");
return -1;
}
ctx->acl_ctx_v6 = acl_ctx_v6;
return 0;
}
////////// 内部 通统一 API --END ////////////

////////////////////// IPV4 文本规则解析 API --START //////////////////////////////////
static int
parse_ipv4_net(const char *in, uint32_t *addr, uint32_t *mask_len)
{
uint8_t a, b, c, d, m;

GET_CB_FIELD(in, a, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, b, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, c, 0, UINT8_MAX, '.');
GET_CB_FIELD(in, d, 0, UINT8_MAX, '/');
GET_CB_FIELD(in, m, 0, sizeof(uint32_t) * CHAR_BIT, 0);

addr[0] = IPv4(a, b, c, d);
mask_len[0] = m;

return 0;
}

static int
parse_ipv4_rule(const char *str, struct rte_acl_rule *v)
{
int i, rc;
char *s, *sp, *in[CB_FLD_NUM];
const char *dlm = " \t\n";
int dim = CB_FLD_NUM;

char rule_buff[1024];
strncpy(rule_buff, str, sizeof(rule_buff));
s = rule_buff;

for (i = 0; i != dim; i++, s = NULL) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
{
printf("ERROR: near by %s %s\n", s, sp);
return -EINVAL;
}
}

rc = parse_ipv4_net(in[CB_FLD_SRC_ADDR], &v->field[SRC_FIELD_IPV4].value.u32, &v->field[SRC_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
printf("failed to read source address/mask: %s\n", in[CB_FLD_SRC_ADDR]);
return rc;
}

rc = parse_ipv4_net(in[CB_FLD_DST_ADDR], &v->field[DST_FIELD_IPV4].value.u32, &v->field[DST_FIELD_IPV4].mask_range.u32);
if (rc != 0) {
printf("failed to read destination address/mask: %s\n", in[CB_FLD_DST_ADDR]);
return rc;
}

GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],v->field[SRCP_FIELD_IPV4].value.u16, 0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],v->field[SRCP_FIELD_IPV4].mask_range.u16, 0, UINT16_MAX, 0);

if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim, sizeof(cb_port_delim)) != 0)
return -EINVAL;

GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],v->field[DSTP_FIELD_IPV4].value.u16,0, UINT16_MAX, 0);
GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH], v->field[DSTP_FIELD_IPV4].mask_range.u16, 0, UINT16_MAX, 0);

if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim, sizeof(cb_port_delim)) != 0)
return -EINVAL;

if (v->field[SRCP_FIELD_IPV4].mask_range.u16< v->field[SRCP_FIELD_IPV4].value.u16
|| v->field[DSTP_FIELD_IPV4].mask_range.u16 < v->field[DSTP_FIELD_IPV4].value.u16)
return -EINVAL;

GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].value.u8, 0, UINT8_MAX, '/');
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].mask_range.u8, 0, UINT8_MAX, 0);
GET_CB_FIELD(in[CB_FLD_USERDATA], v->data.userdata, 0, UINT32_MAX, 0);
//GET_CB_FIELD(in[CB_FLD_CATEGORY_MASK], v->data.category_mask, 0, UINT32_MAX, 0);
//GET_CB_FIELD(in[CB_FLD_PRIORITY], v->data.priority, 0, UINT32_MAX, 0);
return 0;
}

static int
add_rules_string_ipv4(const char **rule_list, int rule_num, struct rte_acl_rule **pacl_base, unsigned int *pacl_num)
{
uint8_t *acl_rules = NULL;
struct rte_acl_rule *rule = NULL;
unsigned int acl_cnt = 0;
int i = 0;

if(0 == rule_num)
{
printf("ipv4 rule 为空\n");
return -1;
}

acl_rules = malloc(rule_num * sizeof(struct acl4_rule));
memset(acl_rules, 0, rule_num * sizeof(struct acl4_rule));

//解析
for(i = 0; i < rule_num; i++)
{
char *rule_text = (char*)rule_list[i];
rule = (struct rte_acl_rule *)(acl_rules + acl_cnt * sizeof(struct acl4_rule));
if (parse_ipv4_rule(rule_text, rule) != 0)
rte_exit(EXIT_FAILURE, "parse ipv4 rules error\n");

rule->data.priority = ACL_PRIORITY_DEBIG + acl_cnt;
rule->data.category_mask = 1; //无需多模
acl_cnt++;
};

//传出参数
*pacl_base = (struct rte_acl_rule *)acl_rules;
*pacl_num = acl_cnt;
return 0;
}

int acl_load_ipv4_str(struct acl_context_t *ctx, const char *rule[], int num)
{
struct rte_acl_rule *acl_base = NULL;
unsigned int acl_num = 0;
int rc = 0;
rc = add_rules_string_ipv4(rule, num, &acl_base, &acl_num);
if(rc)
{
printf("ipv4 rule 解析错误\n");
return -1;
}

rc = acl_load_ipv4(ctx, acl_base, acl_num);
if(rc)
{
printf("ipv4 rule 编译错误\n");
return -1;
}
free(acl_base);
return 0;
}
////////////////////// IPV4 文本规则解析 API --END //////////////////////////////////


////////////////////// IPV6 文本规则解析 API --START //////////////////////////////////
/*
* Parse IPV6 address, expects the following format:
* XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX (where X is a hexadecimal digit).
*/
static int
parse_ipv6_addr(const char *in, const char **end, uint32_t v[IPV6_ADDR_U32],
char dlm)
{
uint32_t addr[IPV6_ADDR_U16];

GET_CB_FIELD(in, addr[0], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[1], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[2], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[3], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[4], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[5], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[6], 16, UINT16_MAX, ':');
GET_CB_FIELD(in, addr[7], 16, UINT16_MAX, dlm);

*end = in;

//注意端序
//DATA序列: 12:34:56:78 (4字节)
//ADDR地址: HIGH <--> LOW
v[0] = (addr[0] << 16) + addr[1];
v[1] = (addr[2] << 16) + addr[3];
v[2] = (addr[4] << 16) + addr[5];
v[3] = (addr[6] << 16) + addr[7];

return 0;
}

static int
parse_ipv6_net(const char *in, struct rte_acl_field field[4])
{
int32_t rc;
const char *mp;
uint32_t i, m, v[4];
const uint32_t nbu32 = sizeof(uint32_t) * CHAR_BIT;

/* get address. */
rc = parse_ipv6_addr(in, &mp, v, '/');
if (rc != 0)
return rc;

/* get mask. */
GET_CB_FIELD(mp, m, 0, CHAR_BIT * sizeof(v), 0);

/* put all together. */
for (i = 0; i != RTE_DIM(v); i++) {
if (m >= (i + 1) * nbu32)
field[i].mask_range.u32 = nbu32;
else
field[i].mask_range.u32 = m > (i * nbu32) ?
m - (i * 32) : 0;

field[i].value.u32 = v[i];
}

return 0;
}

static int
parse_ipv6_rule(char *str, struct rte_acl_rule *v)
{
int i, rc;
char *s, *sp, *in[CB_FLD_NUM];
static const char *dlm = " \t\n";
int dim = CB_FLD_NUM;
s = str;

char rule_buff[1024];
strncpy(rule_buff, str, sizeof(rule_buff));
s = rule_buff;

for (i = 0; i != dim; i++, s = NULL) {
in[i] = strtok_r(s, dlm, &sp);
if (in[i] == NULL)
return -EINVAL;
}

rc = parse_ipv6_net(in[CB_FLD_SRC_ADDR], v->field + SRC1_FIELD_IPV6);
if (rc != 0) {
printf("failed to read source address/mask: %s\n", in[CB_FLD_SRC_ADDR]);
return rc;
}

rc = parse_ipv6_net(in[CB_FLD_DST_ADDR], v->field + DST1_FIELD_IPV6);
if (rc != 0) {
printf("failed to read destination address/mask: %s\n",in[CB_FLD_DST_ADDR]);
return rc;
}

/* source port. */
GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW],
v->field[SRCP_FIELD_IPV6].value.u16,
0, UINT16_MAX, 0);

GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH],
v->field[SRCP_FIELD_IPV6].mask_range.u16,
0, UINT16_MAX, 0);

if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;

/* destination port. */
GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW],
v->field[DSTP_FIELD_IPV6].value.u16,
0, UINT16_MAX, 0);

GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH],
v->field[DSTP_FIELD_IPV6].mask_range.u16,
0, UINT16_MAX, 0);

if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
sizeof(cb_port_delim)) != 0)
return -EINVAL;

if (v->field[SRCP_FIELD_IPV6].mask_range.u16
< v->field[SRCP_FIELD_IPV6].value.u16
|| v->field[DSTP_FIELD_IPV6].mask_range.u16
< v->field[DSTP_FIELD_IPV6].value.u16)
return -EINVAL;

GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].value.u8, 0, UINT8_MAX, '/');
GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].mask_range.u8, 0, UINT8_MAX, 0);
GET_CB_FIELD(in[CB_FLD_USERDATA], v->data.userdata, 0, UINT32_MAX, 0);
//GET_CB_FIELD(in[CB_FLD_CATEGORY_MASK], v->data.category_mask, 0, UINT32_MAX, 0);
//GET_CB_FIELD(in[CB_FLD_PRIORITY], v->data.priority, 0, UINT32_MAX, 0);
return 0;
}

static int
add_rules_string_ipv6(const char **rule_list, int rule_num, struct rte_acl_rule **pacl_base, unsigned int *pacl_num)
{
uint8_t *acl_rules = NULL;
struct rte_acl_rule *rule = NULL;
unsigned int acl_cnt = 0;
int i = 0;

if(0 == rule_num)
{
printf("ipv6 rule 为空\n");
return -1;
}

acl_rules = malloc(rule_num * sizeof(struct acl6_rule));
memset(acl_rules, 0, rule_num * sizeof(struct acl6_rule));

//解析
for(i = 0; i < rule_num; i++)
{
char *rule_text = (char*)rule_list[i];
rule = (struct rte_acl_rule *)(acl_rules + acl_cnt * sizeof(struct acl6_rule));
if (parse_ipv6_rule(rule_text, rule) != 0)
rte_exit(EXIT_FAILURE, "parse ipv6 rules error\n");

rule->data.priority = ACL_PRIORITY_DEBIG + acl_cnt;
rule->data.category_mask = 1; //无需多模
acl_cnt++;
};

//传出参数
*pacl_base = (struct rte_acl_rule *)acl_rules;
*pacl_num = acl_cnt;
return 0;
}

int acl_load_ipv6_str(struct acl_context_t *ctx, const char *rule[], int num)
{
struct rte_acl_rule *acl_base = NULL;
unsigned int acl_num = 0;
int rc = 0;
rc = add_rules_string_ipv6(rule, num, &acl_base, &acl_num);
if(rc)
{
printf("ipv6 rule 解析错误\n");
return -1;
}

rc = acl_load_ipv6(ctx, acl_base, acl_num);
if(rc)
{
printf("ipv6 rule 编译错误\n");
return -1;
}
free(acl_base);
return 0;
}
////////////////////// IPV6 文本规则解析 API --END //////////////////////////////////

////////////////////// IPV4 结构体规则解析 API --START //////////////////////////////////
static int
acl_convert_ipv4_rule(struct acl_rule_t *rule, struct rte_acl_rule *v)
{
v->field[PROTO_FIELD_IPV4].value.u8 = rule->proto_id;
v->field[PROTO_FIELD_IPV4].mask_range.u8 = 0xff;

v->field[SRC_FIELD_IPV4].value.u32 = rule->ipsrc[0];
v->field[SRC_FIELD_IPV4].mask_range.u32 = rule->ipsrc_prefix;

v->field[DST_FIELD_IPV4].value.u32 = rule->ipdst[0];
v->field[DST_FIELD_IPV4].mask_range.u32 = rule->ipdst_prefix;

v->field[SRCP_FIELD_IPV4].value.u16 = rule->src_port_begin;
v->field[SRCP_FIELD_IPV4].mask_range.u16 = rule->src_port_end;

v->field[DSTP_FIELD_IPV4].value.u16 = rule->dst_port_begin;
v->field[DSTP_FIELD_IPV4].mask_range.u16 = rule->dst_port_end;

v->data.userdata = rule->rule_id;
return 0;
}

static int
acl_parse_ipv4_rule(struct acl_rule_t *rule_list, int rule_num, struct rte_acl_rule **pacl_base, unsigned int *pacl_num)
{
uint8_t *acl_rules = NULL;
struct rte_acl_rule *rule = NULL;
unsigned int acl_cnt = 0;
int i = 0;

if(0 == rule_num)
{
printf("ipv4 rule 为空\n");
return -1;
}

acl_rules = malloc(rule_num * sizeof(struct acl4_rule));
memset(acl_rules, 0, rule_num * sizeof(struct acl4_rule));

//解析
for(i = 0; i < rule_num; i++)
{
rule = (struct rte_acl_rule *)(acl_rules + acl_cnt * sizeof(struct acl4_rule));
if (acl_convert_ipv4_rule(rule_list + i, rule) != 0)
rte_exit(EXIT_FAILURE, "parse ipv4 rules error\n");

rule->data.priority = ACL_PRIORITY_DEBIG + acl_cnt;
rule->data.category_mask = 1; //无需多模
acl_cnt++;
};

//传出参数
*pacl_base = (struct rte_acl_rule *)acl_rules;
*pacl_num = acl_cnt;
return 0;
}

int acl_load_ipv4_rule(struct acl_context_t *ctx, struct acl_rule_t *rule, int num)
{
struct rte_acl_rule *acl_base = NULL;
unsigned int acl_num = 0;
int rc = 0;
rc = acl_parse_ipv4_rule(rule, num, &acl_base, &acl_num);
if(rc)
{
printf("ipv4 rule 解析错误\n");
return -1;
}

rc = acl_load_ipv4(ctx, acl_base, acl_num);
if(rc)
{
printf("ipv4 rule 编译错误\n");
return -1;
}
free(acl_base);
return 0;
}
////////////////////// IPV4 结构体规则解析 API --END //////////////////////////////////

////////////////////// IPV6 结构体规则解析 API --START //////////////////////////////////
static int
parse_ipv6_net_rule(uint32_t *v, int mask_prefix, struct rte_acl_field field[4])
{
uint32_t i = 0;
uint32_t m = mask_prefix;
const uint32_t nbu32 = sizeof(uint32_t) * CHAR_BIT;

/* put all together. */
for (i = 0; i != 4; i++) //ipv6 is 4*4 byte
{
if (m >= (i + 1) * nbu32)
field[i].mask_range.u32 = nbu32;
else
field[i].mask_range.u32 = m > (i * nbu32) ? m - (i * 32) : 0;

field[i].value.u32 = ntohl(v[i]); //遵循官方示例 端序翻转
}
return 0;
}

static int
acl_convert_ipv6_rule(struct acl_rule_t *rule, struct rte_acl_rule *v)
{
v->field[PROTO_FIELD_IPV6].value.u8 = rule->proto_id;
v->field[PROTO_FIELD_IPV6].mask_range.u8 = 0xff;

parse_ipv6_net_rule(rule->ipsrc, rule->ipsrc_prefix, v->field + SRC1_FIELD_IPV6);
parse_ipv6_net_rule(rule->ipdst, rule->ipdst_prefix, v->field + DST1_FIELD_IPV6);

v->field[SRCP_FIELD_IPV6].value.u16 = rule->src_port_begin;
v->field[SRCP_FIELD_IPV6].mask_range.u16 = rule->src_port_end;

v->field[DSTP_FIELD_IPV6].value.u16 = rule->dst_port_begin;
v->field[DSTP_FIELD_IPV6].mask_range.u16 = rule->dst_port_end;

v->data.userdata = rule->rule_id;
return 0;
}

static int
acl_parse_ipv6_rule(struct acl_rule_t *rule_list, int rule_num, struct rte_acl_rule **pacl_base, unsigned int *pacl_num)
{
uint8_t *acl_rules = NULL;
struct rte_acl_rule *rule = NULL;
unsigned int acl_cnt = 0;
int i = 0;

if(0 == rule_num)
{
printf("ipv6 rule 为空\n");
return -1;
}

acl_rules = malloc(rule_num * sizeof(struct acl6_rule));
memset(acl_rules, 0, rule_num * sizeof(struct acl6_rule));

//解析
for(i = 0; i < rule_num; i++)
{
rule = (struct rte_acl_rule *)(acl_rules + acl_cnt * sizeof(struct acl6_rule));
if (acl_convert_ipv6_rule(rule_list + i, rule) != 0)
rte_exit(EXIT_FAILURE, "parse ipv6 rules error\n");

rule->data.priority = ACL_PRIORITY_DEBIG + acl_cnt;
rule->data.category_mask = 1; //无需多模
acl_cnt++;
};

//传出参数
*pacl_base = (struct rte_acl_rule *)acl_rules;
*pacl_num = acl_cnt;
return 0;
}

int acl_load_ipv6_rule(struct acl_context_t *ctx, struct acl_rule_t *rule, int num)
{
struct rte_acl_rule *acl_base = NULL;
unsigned int acl_num = 0;
int rc = 0;
rc = acl_parse_ipv6_rule(rule, num, &acl_base, &acl_num);
if(rc)
{
printf("ipv6 rule 解析错误\n");
return -1;
}

rc = acl_load_ipv6(ctx, acl_base, acl_num);
if(rc)
{
printf("ipv6 rule 编译错误\n");
return -1;
}
free(acl_base);
return 0;
}
////////////////////// IPV6 结构体规则解析 API --END //////////////////////////////////


//ACL对象匹配 规则
int acl_match_ipv4(struct acl_context_t *ctx, const char *data)
{
//没有命中
if(NULL ctx || NULL == ctx->acl_ctx_v4)
{
return 0;
}

int result = 0;
int ret = rte_acl_classify(ctx->acl_ctx_v4, (const uint8_t **)&data, (uint32_t *)&result, 1, DEFAULT_MAX_CATEGORIES);
if (ret)
rte_exit(EXIT_FAILURE, "ERROR rte_acl_classify in acl_match_ipv4\n");
return result;
}

//ACL对象匹配 规则
int acl_match_ipv6(struct acl_context_t *ctx, const char *data)
{
//没有命中
if(NULL ctx || NULL == ctx->acl_ctx_v6)
{
return 0;
}

int result = 0;
int ret = rte_acl_classify(ctx->acl_ctx_v6, (const uint8_t **)&data, (uint32_t *)&result, 1, DEFAULT_MAX_CATEGORIES);
if (ret)
rte_exit(EXIT_FAILURE, "ERROR rte_acl_classify in acl_match_ipv6\n");
return result;
}

//ACL对象析构
void acl_destroy(struct acl_context_t *ctx)
{
rte_acl_free(ctx->acl_ctx_v4);
rte_acl_free(ctx->acl_ctx_v6);
free(ctx);
}

match.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#ifndef _ACL_MATCH_H_
#define _ACL_MATCH_H_

#ifdef __cplusplus
extern "C"
{
#endif

struct acl_context_t;
struct acl_rule_t
{
uint8_t proto_id;
uint8_t af; //AF_INET or AF_INET6
uint32_t ipsrc[4];
uint8_t ipsrc_prefix;
uint32_t ipdst[4];
uint8_t ipdst_prefix;
uint16_t src_port_begin; //小端
uint16_t src_port_end; //小端
uint16_t dst_port_begin; //小端
uint16_t dst_port_end; //小端
int rule_id;
};

//创建ACL对象
struct acl_context_t *acl_match_create();

//ACL对象添加 规则 (结构体形式)
int acl_load_ipv4_rule(struct acl_context_t *ctx, struct acl_rule_t *rule, int num);
int acl_load_ipv6_rule(struct acl_context_t *ctx, struct acl_rule_t *rule, int num);

//ACL对象添加 规则 (文本形式)
int acl_load_ipv4_str(struct acl_context_t *ctx, const char *rule[], int num);
int acl_load_ipv6_str(struct acl_context_t *ctx, const char *rule[], int num);

//ACL对象匹配 规则
int acl_match_ipv4(struct acl_context_t *ctx, const char *ip4_hdr);
int acl_match_ipv6(struct acl_context_t *ctx, const char *ip6_hdr);

//ACL对象析构
void acl_destroy(struct acl_context_t *ctx);

#ifdef __cplusplus
}
#endif

#endif

文本规则

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
struct acl_context_t *acl_ctx = acl_match_create();
int rc = 0;

const char *rule_example_ipv4[]={
"47.101.131.102/24 192.168.1.5/24 9000 : 9000 0 : 65535 6/0xff 10001",
"47.101.131.102/32 192.168.1.5/24 9000 : 9000 0 : 65535 6/0xff 10002",
"48.101.131.102/32 192.168.1.5/24 9000 : 9000 0 : 65535 6/0xff 10003",
};
rc = acl_load_ipv4_str(acl_ctx, rule_example_ipv4, 3);

const char *rule_example_ipv6[]={
"2409:8a1e:7bf0:66c0:0000:0000:0000:0002/60 2409:801e:0381:0000:0000:0000:0000:0830/64 46818 : 46818 0 : 65535 6/0xff 2001",
"2409:8a1e:7bf0:66c0:0000:0000:0000:0002/64 2409:801e:0381:0000:0000:0000:0000:0830/64 46818 : 46818 0 : 65535 6/0xff 2004",
"2409:8a1e:7bf0:66c0:0000:0000:0000:0002/68 2409:801e:0381:0000:0000:0000:0000:0830/64 46818 : 46818 0 : 65535 6/0xff 2008",
};
rc = acl_load_ipv6_str(acl_ctx, rule_example_ipv6, 3);

结构体规则

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#include "acl_match.h"

//存储ACL头 -- 全局变量
static std::vector<XXXRuleHeader_t> acl_blacklist;

//仅在规则编译线程执行 -- 黑名单ACL清除
int
acl_rule_blacklist_clear()
{
acl_blacklist.clear();
return 0;
}

//仅在规则编译线程执行 -- 黑名单ACL递增
int
acl_rule_blacklist_add(XXXRuleHeader_t *pHdr)
{
acl_blacklist.push_back(*pHdr);
return 0;
}

//仅在规则编译线程执行 -- 结构转换
static int
acl_rule_blacklist_load_ipv6(XXXRuleHeaderCell *src, struct acl_rule_t *rule)
{
rule->proto_id = src->protoID;
rule->af = AF_INET;
rule->ipsrc_prefix = src->ipSrc.ipPrefix;
rule->ipdst_prefix = src->ipDst.ipPrefix;
rule->src_port_begin = src->portSrc.portStart;
rule->src_port_end = src->portSrc.portEnd;
rule->dst_port_begin = src->portDst.portStart;
rule->dst_port_end = src->portDst.portEnd;
rule->rule_id = src->hash;
memcpy(rule->ipsrc, src->ipSrc.ip.ipv6, 16);
memcpy(rule->ipdst, src->ipDst.ip.ipv6, 16);
return 0;
}

//仅在规则编译线程执行 -- 结构转换
static int
acl_rule_blacklist_load_ipv4(XXXRuleHeaderCell *src, struct acl_rule_t *rule)
{
rule->proto_id = src->protoID;
rule->af = AF_INET;
rule->ipsrc[0] = {src->ipSrc.ip.ipv4};
rule->ipsrc_prefix = src->ipSrc.ipPrefix;
rule->ipdst[0] = {src->ipDst.ip.ipv4};
rule->ipdst_prefix = src->ipDst.ipPrefix;
rule->src_port_begin = src->portSrc.portStart;
rule->src_port_end = src->portSrc.portEnd;
rule->dst_port_begin = src->portDst.portStart;
rule->dst_port_end = src->portDst.portEnd;
rule->rule_id = src->hash;
return 0;
}

//仅在规则编译线程执行 -- 载入处理
int
acl_rule_blacklist_load(int (*func)(struct acl_rule_t *v4, int n4, struct acl_rule_t *v6, int n6, void *user), void *user)
{
struct acl_rule_t rule;
std::vector<struct acl_rule_t> acl_rule_ipv4;
std::vector<struct acl_rule_t> acl_rule_ipv6;

for(int i = 0; i< (int)acl_blacklist.size(); i++)
{
XXXRuleHeader_t *pHdr = acl_blacklist.data() + i;
pHdr->iterator_reset(); //迭代器
XXXRuleHeaderCell *cell = NULL;
while((cell = pHdr->iterator_next()))
{
if(4 == cell->ipSrc.ipVersion)
{
acl_rule_blacklist_load_ipv4(cell, &rule);//转换
acl_rule_ipv4.push_back(rule); //收集
}
else
if(6 == cell->ipSrc.ipVersion)
{
acl_rule_blacklist_load_ipv6(cell, &rule);//转换
acl_rule_ipv6.push_back(rule);//收集
}
}
}

//回调处理 -- 代码隔离(不要让 libXXX看得到DPDK的代码)
func(acl_rule_ipv4.data(), acl_rule_ipv4.size(), acl_rule_ipv6.data(), acl_rule_ipv6.size(), user);
return 0;
}

匹配

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
//黑名单 命中则丢弃
//从报文的 protoid 数据域开始参与匹配
int ruleid_v4 = 0;
if(iph && (ruleid_v4=acl_match_ipv4(g_black_acl_ctx, (const char*)iph + offsetof(struct XXXX_iphdr, protocol))))
{
printf("命中了在 ipv4 ruleid=%u\n", ruleid_v4);
return PKT_DROP;
}

int ruleid_v6 = 0;
if(iph6 && (ruleid_v6=acl_match_ipv6(g_black_acl_ctx, (const char*)iph6 + offsetof(struct XXXX_ipv6hdr, ip6_ctlun.ip6_un1.ip6_un1_nxt))))
{
printf("命中了在 ipv6 ruleid=%u\n", ruleid_v6);
return PKT_DROP;
}

//放行逻辑...
printf("没有命中\n");